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LETTER TO THE EDITOR 

Variational approach to the integrals of motion for 
symplectic maps 

A Baztaiii, E Remiddi and G Turciieiii 
Dipartimento di Fisica della Universith di Bologna, Via lrnerio 46, 40126 Bologna, Italy 
and Imsdtuto Narianale di Fisica Nucleare, Serione di Bologna, Italy 

Received 18 October 1990 

Abstract. A Variational approach to compute approximate integrals of motion for symplec- 
tic maps is presented. We show that the perturbative solution i s  recovered when a small 
neighbourhood of a fixed point is considered. An application to the Henon map illustrates 
how a nonlinear resonance is described by this method. A possible extension to the problems 
of beam dynamics in particles accelerators is discussed. 

The transverse oscillations of a particle in an accelerator around its reference orbit 
(betatronic motion) are usually described by symplectic maps. For a single sextupole 
magnetic element the map is the familiar quadratic Henon map [ 11; the most general 
cases are obtained by composing a large number of polynomial maps, thus obtaining 
a polynomial map of very high order 123. Such a map contains all the information for 
the study of a single particle trajectory, i.e. the local properties of the phase space, 
whiie in the stabiiity probiems of beam dynamics one is rather interested in giobai 
properties related to the dynamical aperture of the machine. 

Usually the study of the global structure is carried out empirically by direct 
inspection of a high number of iterations of the map. An alternative, more systematic, 
approach is given by the perturbative normal form method 131, which provides a 
description of the orbit in suitable neighbourhoods of an elliptic fixed point, corre- 
spullulrlg ,U L U C  IGilcrcllcE txIIIIaLI U I V I L .  

In this letter we propose a variational method to extract global information on the 
topology of phase space by constructing, for a given map, approximate invariants of 
motion. We work out the variational approach for polynomial invariants, but the 
extension to more general cases seems straightforward. 

When restricting the variational analysis to orbits very close to the origin, one 

.---A:-- .̂  _^F ...--- ---...^I -_I.:. 

:ecn.<e:s as expected the pe*Arba$$;e resu!ts. The >,a:iatinna! sn!.l.tion 1. uzique .&;!e 
the perturbative solution is degenerate. 

The variational principles played an important role in the development of 
Lagrangian and Hamiltonian mechanics since Maupertuis and Hamilton's original 
formulation [4]. Recently the non-existence of uniform quasiperiodic solutions for 
quasi-integrable Hamiltonian systems led Percival [ 5 ]  to formulate a fixed frequency 

principle has been formulated by Aubry 161 and Mather [7] in the case of twist area 
preserving maps. Indeed for a fixed diophantine frequency and for sufficiently small 
perturbation these variational approaches are equivalent to the usual perturbative 
method, which can also be used for computational purposes, because the solution is 

variztinna! princip!e whese sn!"!inn gives !he- motion on i.dividl?a! tori. An 2"l!egous 
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analytic and the perturbative series converge. However the variational principle allowed 
Mather to obtain weak solutions corresponding to orbits whose closure is no longer 
a torus but a closed Cantor-like subset of a torus (currently referred to as cantorus [SI). 

In the case of isochronous Hamiltonian vector fields or diffeomorphisms with a 
fixed frequency linear part, the perturbative approach consists in conjugating the system 
with a Birkhoff normal form [SI. It is known that there is in general no analytic solution 
in a neighbourhood of the origin even though a C" interpolation of the KAM tori [IO], 
which is in some sense a weak solution of our problem, exists. As a consequence the 
perturbative series diverges but the remainder can be made exponentially small accord- 
ing to the Nekhoroshev theorem [ll].  

An equivalent, but simpler approach to study the isochronous Hamiltonian vector 
field consists in the perturbative computation of the integrals of motion. Such a 
perturbative expansion is, however, expected to be non-convergent because according 
to a Siege1 [121 theorem, a Hamiltonian field with an elliptic fixed point almost surely 
does not admit anaiytic integrals of motion beyond the Hamiltonian itseif. 

In  this letter we investigate the possibility of constructing, by a variational principle, 
approximate solutions to the integrals of motion in a neighbourhood A of an elliptic 
fixed point when the linear frequency of the map is non-resonant. 

The non-resonance condition fixes the germ of the variational solution to be a 
quadratic form when A is a disk. In this case the non-resonant form perturbation series 
is recovered when ihe radius of A rends io zero; a simiiar resuit noids for an annuius 
around a strongly non-resonant torus. When the radius of A is finite the variational 
solution, which is obtained by solving a linear set of equations, allows to recover 
non-perturbative structures such as chains of islands. A resonant perturbation theory 
for symplectic maps [3, 13, 141, which allows to take into account the effects of a 
nonlinear resonance, is not available for the functional equation of the integrals of 
rnu~iuii anu 1cqurrc5 ~iic WLULIU~I U, a IIIUIC: curripirca~u iuii~iiunai cquarrvri aiiu inc 
calculation of an 'interpolating Hamiltonian'. Moreover the variational method can 
be easily applied to symplectic maps different from polynomial maps and in principle 
can describe the effects of more than one nonlinear resonance at the same time. Another 
advantage of the method is its extreme simplicity from the computational point of 
view, even though some care has to be taken in order to control the conditioning of 

dimension of the system grows. 
Moreover the method is well suited to analyse very complicated maps as in the 

case of a magnetic lattice, or the results of simulation experiments. 
The application of the method to the analysis of the dynamical variables, the 

geometry of the orbits and the stability properties of the beam dynamics seems to be 

Let A : RZd + RZd be an analytic symplectic map and A a bounded set of R Z d ;  we 
say that a non-constant real function I: R2d + R is a first integral of motion for the 
map A on A if the following equation is satisfied 

- . & _ _  . ~ . d  :.-- .L. .-a... :.- .r. 1: _̂ _.I C~ ._.I :.~~-, .__I .L. 

the -..- &-.- -F  I:--"- ~-..-&:-..- ..,1.:-1. -n\..:rlnr th- or\l..t:-r -F +LA ..r-h.ln- ... +he 
L l l C  J J J L r r l r  "L 1111S'lL c'I"a"""J, W L 1 1 ~ 1 1  y L " " x Y c . 3  L11G D"."II"I. "1 L l l S  p"""lc..lr W l l b l l  lllci 

.."..t:n.l^A.. ....rmic:nn 
Y".L.'"."L., Y.Y..""...6' 

I . & ( x ) - I ( x )  = o  VXEA.  (1) 

By defining 

9(I)= ( I a A - I ) 2 d F  (2) J, 
where d p  is the usual Lebesgue measure (which is also the invariant measure since 
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A is symplectic), equation ( I )  can be derived from the variational principle 

8 . q  I) = 0. (3)  

As is well known from a theorem due to Siege1 [E], if A is an open set, equation ( I )  
does not admit any analytic solution I for a generic analytic map A. Therefore we 
look for a minimum of the functional (2) to be regarded as an approximate solution 
of ( I ) .  

In order to avoid the trivial (constant almost everywhere) solutions we write I 
according to 

I ( x )  = l o ( x ) + i ( x )  (4) 

where I o ( x )  is an explicitly known approximation to I ( x )  and f ( x )  belongs to a 
subspace linearly independent from l o ( x ) .  If 

&=AooA ( 5 )  

where A, is a linear map (with non-degenerate eigenvalues), then the natural choice 
for lo is any one of the d quadratic forms providing the integrals of motion of A, and 
I can be chosen in the subspace of the polynomials of order larger or equal to 3. 

In the case of the HCnon map of the plane ( d  = I ) ,  letting x = ( q , p )  we have 

where R ( o )  is the rotation matrix of an angle m, A,, corresponds to R ( o )  and the 
quadratic invariant Io is given by 

I o ( x )  = p 2 + q * .  (7) 
In order to get approximate solutions we choose f ( x )  in the subspace $F" of the 
polynomials of degree n with 3 < n < N. Let (f,}*>, be the monomial base of 9- (the 
space of all polynomials of degree >3), ordered in such a way that the degree o f f ,  
is a non-decreasing sequence. Expanding l ( x )  in the monomial base we introduce a 
v(N)-dimensional vector a, where v(N) is the dimension of Cj", according to 

u ( N 1  

k = I  
I ( x )  = lo(x)+ x a r m ) .  (8) 

One easily finds that U( N )  = ('::") - (2i:2). If A is a polynomial map of order L, we 
introduce the rectangular v(LN) x v(N) matrix D and the u(LN)-dimensional vector 
b defined according to 

f , ( M ( x ) )  = x o,x&(x) (9) 
j >  k 

and 

In the case of the Henon map, for which L =  2, D is a matrix of order v(2N) x v(N) 
and the ~(2N)-dimensional vector b has only the first 4 4 )  entries not equal to zero. 
With the above notation the functional (2) reads 

~ ( l ) = ~ ( ~ - i ) G ( D - l ) a + ~ ( ~ - i ) G b + ~ G ( D - l ) ~ + ~ G b  (11) 
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where 1 is a rectangular matrix U( L N )  x Y (  N )  whose first U( N) rows are the Y (  N) x 
v ( N )  identity matrix, and the remaining rows are all zero, and G is the Grassmann 
matrix 

G, = J f ; ( x ) f ; ( x )  dfi(X). (12) 
A 

The minimum of yt(I) is given by the solution of the linear system - -  
( i j )  

The matrix ( 6 - i ) G ( D - l )  is non-singular since the vectors of the null space of this 
matrix would provide exact integrals of motion as polynomials of finite order N. If 
the initial map 1 is non-integrable (generic case) this is clearly impossible. 

In order to discuss the connection with the perturbative approach we first observe 
that equation ( l ) ,  written in the polynomial base, reads 

( D - l ) a = b .  (14) 

Choosing the phase space coordinates so that 1, is diagonal, then the u ( N ) -  
diagonal elements of ( D  - 1) are given by A Y !  . . . A;? - 1, [mi < N, where A, are the 
eigenvalues of A0. As a consequence the elements corresponding to the normal form 
monomials ( x " l A F . .  . A;? - 1 =0} vanish. 

The perturbative method consists in projecting into the u ( N )  first components of 
our polynomial base 

I I N ( D -  1)n =II,vb (15) 

.\-, - -  
(E- i )C(D- i ja  = - (D- IJUO. 

where 

(16) 

and Go is any invertible matrix, in particular the reduced Y (  N) x U( N) Grassmann 
matrix. The presence of normal form monomials reduces the rank of the linear system 
(15) to r <  u ( N )  and the solution depends on u ( N ) - r  arbitrary constants. That 
corresponds to the fact that if I is a perturbative solution then 

I ' = I , + g ( I )  (17) 

where g ( 1 )  is a polynomial of order 2 at least, is also a solution. 
When A is a disk of radius r, in the limit r +  0 the Grassmann matrix G approximates 

I I N  with an error of order IN+' so that we recover the perturbative solution exactly 
and the system (13) becomes equivalent to the system (15). Moreover the degeneracy 
of the perturbative solution implies that the limit r + 0 is singular. But if we are in a 
more general situation and the perturbative approach cannot be used, the system (10) 
which takes into account the contribution of all the terms in the expansion of fk 0 1, 
still provides the best approximate integral of motion in the subspace p N .  Moreover 
we recall that the perturbative method in a neighbourhood of an invariant torus requires 
a particular coordinates system (p ,  8) where p measures the 'distance' from the torus 
and we need to know the parametric equation of the torus IO perform a non-iriviai 
change of coordinates. This procedure is very cumbersome from a numerical point of 
view. In contrast, the variational approach requires only a numerical knowledge of 
the invariant torus and works in every base system {fx). However as the numerical 
results suggest, in a general case the matrix (17) is a full, symmetric, ill-conditioned 
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matrix (the ratio between the biggest and the smallest eigenvalue is x l )  so that solving 
the linear system (9) is not a trivial problem. In order to overcome such a difficulty 
one should partition the phase space into a large number of small annuli and/or use 
preconditioning techniques. 

A rigorous estimate of the error I o  A - I is not yet available hut the results of the 
perturbative theory suggest that a Nekhoroshev-type estimate may still hold for systems 
which can be locally approximated by integrable systems. However the answer to the 
question of how accurate can the interpolation of the orbits of a symplectic map A 
by means of the level sufaces of set of first integrals of motion be, may be connected 
with the existence of weak solutions for the variational principle (3) which has not 
yet been studied. 

We have used the variational method for computing an  approximate integral of 
motion for the Hinon map (6) in a subset A of the stability region of the elliptic fixed 
point. The linear frequency o / 2 n  was fixed at the value 0.21 so that a nonlinear 
resonance of order 5 causes the presence of a chain of 5 islands (see figure 1) near 
the border of the stability basin of the origin. 

Figure 1. Phase plot of the H h o n  map obtained by directly iterating the map; the linear 
frequency i s  chosen as Y = 0.21. 

Our aim is to reproduce accurately the geometry of the orbits in such a basin. In 
this case the non-resonant perturbative approach to the integrals of motion, which 
describes only closed curves, fails completely when the chain of islands is approached. 
In this case the chain of islands can be described by the resonant perturbation theory 
based on the resonant Birkhoff normal forms [3,13,14], even though the accuracy is 
limited when the chain is very close to the dynamical aperture where the perturbation 
parameter has a large value. However the variational approach allows us, in principle, 
to describe any number of topological structures such as chains of an arbitrary number 
of islands and islands within islands, whereas the resonant perturbation theory can 
only reproduce closes curves and chains of islands whose order is a multiple of the 
resonance order. Moreover the resonant perturbation approach has been developed 
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for polynomial maps whereas the variational method can work for any base system 
of functions. 

An exhaustive comparison between the variational method and the perturbative 
method will be the object of a future work. 

We look for a polynomial integral of motion such as  (8) where the initial condition 
l o ( x )  is chosen according to (7). The entries of the matrix ( B - i ) G ( D -  1) and of the 
known term (B-i)Gb, see equation (13), are given by the integrals 

( I ,  0 A - & ) ( I o  0 A - I o )  dp.  

In order to simulate a realistic situation we have only assumed a numerical knowledge 
nf the map 1 and hme thercfere rep!2ced the in!egrL?!s (!E?) with !he ESmr 

where {x;) is a distribution of m points in the set A and x: = A(x;). We have not used 
any optimization technique in the choice of the distribution { x j }  but we have checked 
that the results are stable when we change the sampling. Fixing the highest degree of 
the polynomials in the expansion (8) to N = 9 a uniform distribution of 2000 points 
tums out to be sufficient. 

In  figure 2 we have plotted the level curves I ( x )  =constant of our  approximate 
integral of motion; they are to be compared with the orbits in figure 1 which are the 
results of a direct tracking obtained by iterating the map. The scale of the two figures 
is the same. Note the quite good agreement between the orbits and the level curves; 

Flgure 2. Level curves of the integral motion provided by the variational method: the scale 
of both figure I and fisure 2 is the same. 
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the integral of motion properly reproduces the two different topological structures: 
the closed orbits around the origin and the island structure at larger distance. The 
information contained in the tracking data is equivalent to the information provided 
by the variational integral of motion. It is clear that the same method can be used 
starting from the tracking data which describe the motion of a charged particle in the 
magnetic lattice of a hadron accelerator. The method requires as input a relatively 
small number of tracking data; its further advantages are the information compression 
UllU a Jll l ' l l l  llYlll"cil "1 pdldrrrsrcls d,,U d gluuar ucbLlrprrolr U1 L'le geome,ry U, LLlC 

orbits, well suited for graphical representation, which allows us to draw a conclusion 
on the long-time behaviour of the orbits and on their stability properties. 

:..*- "-^,I - L - - " - -  .̂._I -,-LA, 1 -.-. :-.:.- .P.L. -'-&L- 
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